MODEL T-145 with Bayonet Cap

VOLTAGE 6
MATERIAL Polypropylene
DIMENSIONS Inches (mm)
BATTERY Deep-Cycle Flooded/Wet Lead-Acid Battery
COLOR Maroon
WATERING HydroLink ${ }^{T M}$ Watering System

PRODUCT + PHYSICAL SPECIFICATIONS

BCI Group Size	Type	Terminal Type ${ }^{\text {6 }}$	Dimensions ${ }^{\text { }}$ Inches (mm)			Weight Lbs. (kg)
			Length	Width	Height ${ }^{\text {F }}$	72 (33)
GC2H	T-145	1,2,3,4	10.30 (262)	7.11 (181)	11.90 (302)	

ELECTRICAL SPECIFICATIONS

Cranking Performance		Capacity ${ }^{\text {A }}$ Minutes		Capacity ${ }^{\text {B }}$ Amp-Hours (AH)				Energy (kWh)	Internal Resistance (m@)	Short Circuit Current (amps)
C.C.A. ${ }^{\mathrm{D}} 0^{\circ}{ }^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$	C.A. ${ }^{\mathrm{E}}$ @ $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$	@ 25 Amps	@ 75 Amps	$5-\mathrm{Hr}$	$10-\mathrm{Hr}$	$20-\mathrm{Hr}$	$100-\mathrm{Hr}$	$100-\mathrm{Hr}$	-	-
-	-	530	145	215	239	260	287	1.72		

CHARGING INSTRUCTIONS

Charger Voltage Settings (at $77^{\circ} \mathrm{F} / 25^{\circ} \mathrm{C}$)					
System Voltage	6 V	12 V	24V	36 V	48 V
Bulk Charge	7.4	14.8	29.6	44.5	59.3
Float Charge	6.7	13.5	27.0	40.5	54.0
Equalize Charge	8.1	16.2	32.4	48.6	64.8
Do not install or charge batteries in a sealed or non-ventilated compartment. Constant under or overcharging will damage the battery and shorten its life as with any battery.					

CHARGING TEMPERATURE COMPENSATION

Add	Subtract
0.005 volt per cell for every $1^{\circ} \mathrm{C}$ below $25^{\circ} \mathrm{C}$	
0.0028 volt per cell for every $1^{\circ} \mathrm{F}$ below $77^{\circ} \mathrm{F}$	0.005 volt per cell for every $1^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ 0.0028 volt per cell for every $1^{\circ} \mathrm{F}$ above $77^{\circ} \mathrm{F}$

OPERATIONAL DATA

Operating Temperature	Self Discharge
$-4^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$. At temperatures below $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ maintain a state of charge greater than 60%.	$5-15 \%$ per month depending on storage temperature conditions.

TRUE
MADE IN
USA
DEEP
CYCLE

Percentage Charge	Specific Gravity	Cell	6 Volt
100	1.277	2.122	6.37
90	1.258	2.103	6.31
80	1.238	2.083	6.25
70	1.217	2.062	6.19
60	1.195	2.040	6.12
50	1.172	2.017	6.05
40	1.148	1.993	5.98
30	1.124	1.969	5.91
20	1.098	1.943	5.83
10	1.073	1.918	5.75

TERMINAL CONFIGURATIONS ${ }^{6}$

1	ELPT	Embedded Low Profile Terminal	3	EAPT	Embedded Automotive Post Terminal
		Terminal Height Inches (mm) 1.22 (31) Torque Values in-lb (Nm) $95-105(11-12)$ Bolt 5/16"			Terminal Height Inches (mm) 0.95 Torque Values in-lb (Nm) $50-70(5.6-7.9)$
2	EHPT	Embedded High Profile Terminal	4	EUT	Embedded Universal Terminal
		Terminal Height Inches (mm) 1.50 (38) Torque Values in-lb (Nm) $95-105(11-12)$ Bolt 5/16"			Terminal Height Inches (mm) 1.10 (28) Torque Values in-lb (Nm) $95-105(11-12)$ Bolt 5/16"

BATTERY DIMENSIONS (shown with EHPT)

TROJAN T-145 PERFORMANCE

A. The number of minutes a battery can deliver when discharged at a constant rate at $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$ and maintain a voltage above $1.75 \mathrm{~V} /$ cell. Capacities are based on peak performance.
B. The amount of amp-hours (AH) a battery can deliver when discharged at a constant rate at $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$ and maintain a voltage above $1.75 \mathrm{~V} /$ cell. Capacities are based on peak performance.
Dimensions may vary depending on type of handle or terminal. Batteries should be mounted with 0.5 inches (12.7 mm) spacing minimum.

PERCENT CAPACITY VS. TEMPERATURE

D. C.C.A. (Cold Cranking Amps) - the discharge load in amperes which a new, fully charged battery can maintain for 30 seconds at $0^{\circ} \mathrm{F}$ $\left(-18^{\circ} \mathrm{C}\right)$ at a voltage above $1.2 \mathrm{~V} /$ cell.
$\left(-18^{\circ} \mathrm{C}\right)$ at a voltage above $1.2 \mathrm{~V} /$ cell.
C.A. (Cranking Amps) - the discharge load in amperes which a new, fully charged battery can maintain for 30 seconds at $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ at a vortage above $1.2 \mathrm{~V} /$ cell. This is sometimes referred to as marine cranking amps @ $32^{\circ} \mathrm{F}$ or M.C.A. @ $32^{\circ} \mathrm{F}$.
Height taken from bottom of the battery to the highest point on the battery. Heights may vary depending on type of terminal.
G. Terminal images are representative only.

